A Detailed Refinement of the Crystal and Molecular 517. Structure of Thiourea.

By N. R. KUNCHUR and MARY R. TRUTER.

A three-dimensional X-ray crystal-structure analysis of thiourea has been made. The anisotropic thermal motion has been analysed and the bond lengths corrected for systematic errors arising from rotational oscillations of the molecule. The sulphur, carbon, and nitrogen atoms in each molecule are coplanar, with bond lengths C-N = 1.33 ± 0.01 Å and C-S = 1.71 ± 0.01 Å, and angles S-C-N = $122.2^{\circ} \pm 0.6^{\circ}$ and N-C-N = $115.6^{\circ} \pm 1.1^{\circ}$.

THIOUREA is conventionally written $S=C(NH_2)_2$ but its reactions show that the zwitterion $-S-C(=NH_{2}^{+})NH_{2}$ must also be considered. The Raman spectrum ¹ of the solid has been interpreted as indicating that the ionic form is predominant; on the other hand the approximate bond lengths,² C-S = 1.64 and C-N = 1.35 ± 0.1 Å, are confusing because both seem to show a good deal of double-bond character. A refinement of the X-ray analysis of this simple molecule has therefore been undertaken in order to provide more accurate bond lengths for comparison with theory and also with the bond lengths in co-ordination compounds containing thiourea.³

Wyckoff and Corey² found that there were four molecules in the orthorhombic unit cell (a = 7.68, b = 8.57, c = 5.50 Å) with space group $Pnma - D_{2b}^{16}$. (For convenience Wyckoff and Corey's b and c axes have been interchanged to conform with the space-group orientation in the International Tables.⁴) In each molecule the carbon and the sulphur atom lie on a mirror plane with the two equivalent nitrogen atoms on either side of it. The co-ordinates determined by two-dimensional analysis were C, 0.10, $\frac{1}{4}$, -0.14; S, -0.007, $\frac{1}{4}$, 0.12; N, $0.13, 0.125, -0.27_8$. The molecule was planar within the limits of experimental error.

Isotropic Refinement by Three-dimensional Methods.—The intensities of the 260 reflections observable with copper radiation were measured; few spots of high values of sin θ were observed so that very little additional information could have been obtained by the use of radiation of shorter wavelength at room temperature. Preliminary calculation showed good agreement between the observed structure amplitudes, $|F_{obs}|$, and those calculated from Wyckoff and Corey's co-ordinates which were therefore taken as a starting point for three-dimensional analysis. The atomic scattering factors used were those given by McWeeny⁵ for carbon and nitrogen and by James and Brindley for sulphur,⁶ multiplied by a temperature factor exp $(-B \sin^2 \theta / \lambda^2)$. This theoretical scattering factor for sulphur was chosen in preference to empirical values 7 determined more recently because the latter are not independent of the anisotropic thermal motion and bonding in the structures from which they were derived.

The co-ordinates were refined in three successive stages by calculation of differential syntheses ⁸ with a back-shift correction for finite-series effects, and at each stage the

⁷ Cox, Gillot, and Jeffrey, Acta Cryst., 1949, 2, 356; Abrahams, ibid., 1955, 8, 661.
 ⁸ Booth, Trans. Faraday Soc., 1946, 42, 444.

Kohlrausch and Wagner, Z. phys. Chem., 1940, B, 45, 229.
 Wyckoff and Corey, Z. Krist., 1932, 81, 386.
 Truter, Acta Cryst., 1957, 10, 785.
 'International Tables for X-ray Crystallography," 1952, Kynoch Press, London.

⁵ McWeeny, Acta Cryst., 1951, **4**, 51.

[&]quot; International Tables for the Determination of Crystal Structures," Borntraeger, Berlin, 1935.

scale and temperature factors were altered to make the observed and calculated mean curvatures and peak values of the electron-density distributions more nearly equal. (Because of the uncertainty in their structure amplitudes, planes which gave reflections too weak to be observed were omitted from the refinement.) These refinement operations and their results are summarised below $\{R \text{ is the agreement index}, R \}$

		$\underbrace{B(\mathbf{A^2})}_{$			Max. co-ordinate
Cycle	'sulphur	nitrogen	carbon	R^{+}	shift (Å)
1	4 ·0	4 ·0	4 ·0	0.20	0.18
2	3.5	4.5	4.5	0.163	0.04
3	3 •5	4 ·5	4 ·24	0.15_{8}	0.01

 $\sum_{i=1}^{\infty} ||F_{obs}| - |F_{calc}||/\sum_{i=1}^{\infty} |F_{obs}||$ The smallness of the co-ordinate shifts in the last cycle showed that no further improvement was possible by isotropic refinement, even though (as the figures below show) the mean *B* factor for carbon had not yet been adjusted to its best value. However, the need for anisotropic adjustment of the parameters was shown by the variation with direction of the observed curvature of the electron density in each atom; in the Table below r_x , r_y , and r_z are respectively the ratios of the observed curvatures; ρ is the peak electron density:

	$ ho_{\rm obs}/ ho_{\rm calc}$	r _x	Υ _y	r _z
С	1.01	1.06	1.10	1.14
S	0.98	0.92	0.99	1.09
N	0.94	0.85	1.03	1.01

It can be seen that for all atoms r_x is smaller than the other two ratios, which indicates that the thermal motion is greatest in the direction of the *a* axis, *i.e.*, the axis which is most nearly normal to the planes of the molecules.

Determination of the Anisotropic Thermal Parameters.—A method of successive refinement for determining anisotropic thermal-motion parameters has been described by Cruickshank,⁹ who also gives the refinement equations.

After three cycles of anisotropic refinement the agreement index was reduced to 0.112, the following parameters, which resulted from the third cycle, being used to calculate the structure factors:

				b33	b_{23}	b22	b_{13}	b_{12}	b_{11}
	x/a	y/b	z c	(×105)	$(\times 10^{5})$	$(\times 10^{5})$	$(\times 10^5)$	(×10 ⁵)	$(\times \hat{1}0^5)$
С ч	0.09151	0.25000	0.16278	1161	0	1331	2115	0	1140
S	Ö·DD726	0.25000	0.11400	1770	0	1069	266	0	1789
N	0·13160	0.12011	0.27742	3885	819	1011	3026	173	2941

The figures given are those actually used, although, as shown below, they are not all significant. The parameters b_{ij} for each atom were used in the expression exp $(b_{11}h^2 + b_{12}hk + b_{13}hl + b_{22}k^2 + b_{23}kl + b_{33}l^2)$ to give the temperature factor for each hkl. A list of observed and calculated structure factors is given in Table 1; the scale factor, obtained by the criterion given above, also made $\sum |F_{obs}|$ equal to $\sum |F_{calc}|$ where the summations are over all planes allowing for multiplicity. The poor agreement for the planes (020), (200), and (101) may be due to extinction; if these planes are omitted the scale factor is altered by 0.3% and the agreement index R is reduced to 0.109.

A fourth differential synthesis was carried out and the maximum change required in the atomic co-ordinates was 0.005 Å (in x_N). The final co-ordinates and their standard deviations (calculated from Cruickshank's formula¹⁰) are:

	x/a	y/b	z/c	(Å)	$\sigma(x)$ (10 ³ Å)	y (Å)	$\sigma(y)$ (10 ³ Å)	(Å)	$\sigma(z)$ (10 ³ Å)
С	0.0916	0.2500	0.1632	0.701	8	2.134	0	0.901	13
S	Ö ·DD73	0.2500	0.1138	0·056	2	2.134	0	0.628	2
N	0.1322	0.1201	0 ·2767	1.012	11	1.025	10	I.527	11

The standard deviation of the electron density is $0.2e/Å^3$.

¹⁰ Idem, ibid., 1949, 2, 65.

⁹ Cruickshank, Acta Cryst., 1956, 9, 747.

								Тав	LE 1.								
hkl 000	F (calc.) (160)	F (obs.)	hkl 11 1	F (calc.) —	F (obs.)	<i>hkl</i> 113	F (calc.)	F (obs.)	hkl 125	F (calc.) 13	F (obs.) 14	hki 102	F (calc.) 2	F (obs.) 3	hki 273	F (calc.) 10	F (obs.) 14
020 040 060	-66 17 -31	44 17 27	121 131 141	40 5 31	37 7 30	$123 \\ 133 \\ 143$	$ \begin{array}{r} 24 \\ -7 \\ -22 \end{array} $	24 7 24	$135 \\ 145$	-9	10	$112 \\ 122 \\ 132 \\ 142 $	34 9 19	41 7 17	283 293	-7	7
080 0, 10, 0	28 9	20 7	151 161 171	-18	$\frac{\overline{17}}{\overline{10}}$	$153 \\ 163 \\ 173 \\ 182 $		$\frac{\overline{14}}{\overline{7}}$	$305 \\ 315 \\ 325 \\ 225 \\ 225 \\ 325 $	-10 -12	$\frac{12}{12}$	$142 \\ 152 \\ 162 \\ 179$	-17 -17	$\frac{10}{17}$	403 413 423	-13 -13 -91	$\frac{14}{20}$
$200 \\ 210 \\ 220 \\ 230$	-38 -46 -14	43 37 42 20	191 1, 10, 1	11 -7	$\frac{10}{7}$	303 313	-16	17	345 505	-11 -8	14 7	182 192	-8	$\frac{15}{10}$	433 443 453		$\frac{20}{17}$
240 250 260 270	35 22 10	$\frac{37}{20}$	301 311 321 331	-26 -22 4	$\frac{27}{25}$	323 333 343 353	$ \begin{array}{c} 11 \\ -9 \\ -8 \\ 5 \end{array} $	$10 \\ 10 \\ 10 \\ 7$	$515 \\ 525 \\ 535 \\ 545$	10	$\frac{7}{10}$	302 312 322 332	$ \begin{array}{r} 6 \\ -29 \\ -12 \\ 28 \end{array} $	7 30 10 27	603 613 623 633	-11 -7	$\frac{10}{14}$
280 290 2, 10, 0	14 4 9	10 3 7	341 351 361 371	$-16 \\ -13 \\ -$	$\frac{18}{14}$	363 503	8 8	10 10	011 031	14 39	14 38	342 352 362	-20 -12 -12	$\frac{14}{20}$	104 114	-8	7
400 410 420			381 501 511	9 15 	10 14	004 024 044	-19 26 -28	17 27 27	201 211	-23	47 25	382 392	-9	8	$124 \\ 134 \\ 144 \\ 154$	13 9	$\frac{10}{9}$
430 440 450 460		$\frac{1}{27}{10}$	521 531 541 551	-11 -8	$\frac{10}{8}$	064 084 204	-15 -7	14 7 20	221 231 241 251	-11 16 -12 -13	18 12 11	502 512 522 532	-21 21 	$\frac{20}{20}$	304 314 324	=	=
470 480 490	_4 _4	3	561 701	-7	8	214 224 234	21	20	261 271 281	-7 10 10	7 9 10	542 552 562 579	-17 -17	$\frac{15}{10}$	334 344	-7	8
4, 10, 0 600 610	6 13 10	3 10 10	721 731 741	- ⁴ -6	8	$244 \\ 254 \\ 264$		$\frac{15}{7}$	401 411		8 30	702 712	12	$\frac{10}{10}$	106 116	-10	, 11
620 630 640	-10 -7	$\frac{10}{7}$	$002 \\ 022 \\ 042$	$-33 \\ -1 \\ 18$	30 7 17	404 414 424	-18 -12	$\frac{17}{14}$	421 431 441	-9 9 8	10 10 10	722 732	10	10	$126 \\ 136 \\ 146 \\ 156$	-12	$\frac{10}{7}$
660 670 680	-7 -5 5	7 3 3	202 212 222	5 21	7 24	434 444 454 464	$\frac{-7}{-8}$	$\frac{7}{3}$	461 471	9 4 14	10 3 14	033 053 073	-37 -12 -11 16	14 14 17	306 316	, 	$\frac{1}{13}$
800 810 820	$10 \\ 6 \\ -7$	7 3 7	232 242 252	10 	10 	604 614 624	<u>-</u> 6 	7	601 611 621 631	-4 -13 -13 -14	$ \frac{3}{14} \frac{14}{15} $	093 203 213	-9 -11 -22	8 14 25	$506 \\ 516$	-9	
830 840 850	-6 -5		262 272 402	-9 17	9 17	634 644	-8	8	641 651 661	-10 -10	7 8	223 233 243	22 12	$\frac{1}{20}$			
101	41	34	103		17	$\begin{array}{c} 105 \\ 115 \end{array}$	- <u>2</u> 0	17	$671 \\ 681$	-2	3	$253 \\ 263$	-17	17			

The peak value of the electron density for each atom is given below together with the ratios of the observed and calculated values of the electron densities and curvatures.

	$ ho_{ m obs}~(e/{ m \AA^3})$	$\rho_{\rm obe}/\rho_{\rm calc}$	r _x	Υy	¥ z
С	7.0	0.95	1.00	1.00	0.97
S	28.0	1.00	1.00	0.99	1.02
N	$7 \cdot 2$	1.01	1.00	0.99	0.98

The ratios still differ slightly from unity, and the final thermal parameters (all $\times 10^3$) quoted below have been obtained by calculating the changes corresponding to the differences between the observed and calculated curvatures.

		b_{33}	b_{23}	b_{22}	b_{13}	b_{12}	b11	$\sigma(b_{33})$	$\sigma(b_{22})$	$\sigma(b_{11})$
С		14	0	13	28	0	11	8	2	3
s	•••••	18	0	11	3	0	18	2	0.4	0.6
Ν		40	8	10	32	I	29	8	2	3

The standard deviations, $\sigma(b_{ii})$, are derived from the expression:

$$\sigma^2(b_{ii}) = \{\frac{6}{5} \sum h_i^4 \sigma^2(\mathbf{F})\} / (\sum h_i^4 \mathbf{f})^2$$

given by Cruickshank,⁹ in which f is the scattering factor and $\sigma^2(F)$ is taken as $(|F_{obs}| - |F_{calc}|)^2$.

Analysis of the Anisotropic Thermal Motion.—Cox, Cruickshank, and Smith¹¹ have ¹¹ Cox, Cruickshank, and Smith, Nature, 1955, **175**, 766.

shown that rotational oscillations of molecules can give rise to systematic errors in bond lengths determined by X-ray methods, so that an analysis of the thermal motion of the molecule is necessary before the final corrected bond lengths can be given.

The mean square amplitudes of vibration of an atom in any direction can be represented by the radius of an ellipsoid; the magnitudes and orientation of the axes of this ellipsoid can be calculated from the six numbers b_{ij} . In the direction of the unit cell edge of length a_i the mean square amplitude of vibration, μ_{ii}^2 , is given by $\mu_{ii}^2 = b_{ii}a_i^2/2\pi^2$. The cross terms, $\mu_{ij}^2 (\mu_{ij}^2 = b_{ij}a_ia_j/4\pi^2$, where $i \neq j$), are required with the three values of μ_{ii}^2 to determine the dimensions and orientation of the ellipsoid; only if the values of b_{ij} are zero will the axes of the ellipsoid be parallel to the crystallographic axes. From the six values of μ^2 for all atoms we can derive (a) the r.m.s. amplitudes and directions of maximum and minimum thermal vibration of each atom with respect to the crystallographic axes, (b) the same quantities with respect to a set of molecular axes, and (c) the r.m.s. amplitudes of angular oscillation and translational vibration of the molecule as a whole assuming it to be a rigid body.

(a) The maximum and minimum r.m.s. amplitudes of vibration, μ_{max} and μ_{min} , derived from the lengths of the major and minor axes of the ellipsoids, and their direction cosines are given in Table 2 with, for comparison, the direction cosines of the normal to the molecular plane and of the bonds.

T	ABI	Æ	2.
л.	ABI	æ	∡.

C S N	μ _{max} (Å) 0·232 0·231 0·333 Normal	Direction (0.785, 0, 0.620) (0.992, 0, 0.129) (0.812, ± 0.057 , 0.581) (0.896, 0, 0.444)	$\begin{array}{c} \mu_{\min} (\text{\AA}) \\ 0.040 \\ 0.163 \\ 0.169 \\ \text{C-S} \\ \text{C-N} \end{array}$	Direction (0.620, 0, $\overline{0}.785$ (0.129, 0, $\overline{0}.9\overline{9}2$) (0.383, ± 0.699 , $\overline{0}.\overline{6}\overline{0}\overline{4}$) (0.444, 0, $\overline{0}.8\overline{9}\overline{6}$) (0.937, 0.846, $\overline{0}.\overline{4}7\overline{8}$)
	11011101	(0 000, 0, 0 111)	C-N C-N'	$(0.237, 0.846, \overline{0.478})$ $(0.237, \overline{0.846}, \overline{0.478})$

The angles between the various directions are

between	$\mu_{max}(C)$	and	normal,	12°
between	$\mu_{max}(S)$	and	normal,	19°
between	$\mu_{max}(N)$	and	normal.	10°

between $\mu_{min}(S)$ and C–S bond, 19° between $\mu_{min}(N)$ and C–N bond, 14°

(b) Molecular axes were chosen thus:

with axis (3) as the normal to the molecular plane through the mass centre, o. Tensor transformations (Cruickshank ¹²) gave the following mean square amplitudes U_{ij} (all in Å²) referred to these axes:

	U_{11}	U_{12}	U_{13}	U_{22}	U_{23}	U_{33}
С	0.004	0	0.013	0.049	0	0.051
S	0.030	0	0.008	0.041	0	0.051
N	0.039	0.010	0.014	0.038	0.003	0.109
N′	0.039	0.010	0.014	0.038	<u>0.003</u>	0.109

From these we obtain the following r.m.s. amplitudes (in Å) of vibration:

along the normal, C, 0.227; S, 0.225; N, 0.330 along the C-S bond, C, 0.061; S, 0.172 along the C-N bond, C, 0.190; N, 0.173 perpendicular to the C-S bond in the molecular plane, C, 0.221; S, 0.202 perpendicular to the C-N bond in the molecular plane, C, 0.129: N, 0.211

¹² Cruickshank, Acta Cryst., 1956, 9, 754.

(c) For the molecule as a whole the tensors T (in Å²) and ω (in radians²) for the mean square amplitudes of the translational and rotational motions can be obtained by suitable transformations.¹² The values are:

T_{11}	T_{12}	T ₁₃	T_{22}	T_{23}	T_{ss}
0.0234	0	0.0098	0.0332	0	0.0515
$\omega_{11} 0.0470$		ω_{13} 0.0020	ω_{22} 0.000	ω_{23}	$\omega_{33} 0.0077$

giving a r.m.s. angular oscillation of $5\cdot0^{\circ}$ about axis (3), 0° about (2), and $12\cdot5^{\circ}$ about (1), *i.e.*, the main oscillation is about an axis through the C-S bond. The r.m.s. amplitudes of translation are $0\cdot153$ Å along axis (1), $0\cdot182$ Å along (2), and $0\cdot227$ Å along (3).

The effect of rotational oscillation is to make an atom, P, appear closer to the centre of oscillation, O (taken as the mass centre), by a small distance δ which can be determined from the relation: ¹³

$$\delta = \frac{1}{2r} \left\{ \frac{s^2}{1 + s^2/q^2} + \frac{t^2}{1 + t^2/q^2} \right\}$$

where r is the uncorrected distance from O to P, $q^2 = \rho/(\delta^2 \rho/\delta x_{ti}^2)$, and s^2 and t^2 are the mean square amplitudes of oscillation about two axes through O orthogonal to OP.

For carbon and sulphur $t^2 = \omega_{22}r^2$ and $s^2 = \omega_{33}r^2$, whence $\delta_0 = 0.0016$ Å and $\delta_s = 0.0045$ Å and the correction to the C-S bond length is +0.006 Å. For nitrogen $s^2 = \omega_{33}r^2$

ition to the C-S bond length is +0.006 Å. For nitrogen $s^2 = \omega_{33}r^2$ and $t^2 = r^2 \omega_{OG}$, where OG is perpendicular to ON in the plane of the molecule. ω_{OG} , calculated from ω_{11} , ω_{12} , ω_{22} , and the direction cosines of OG, has the value 0.0231 radians², whence δ_N = 0.0189 Å. The correction to the C-N bond is the component of δ_N along the bond minus the component of δ_C along the bond and is 0.018 Å.

Hydrogen Atoms.—When the anisotropic thermal motion for the other atoms had been determined, attempts were made to

locate the hydrogen atoms. First the intermolecular N-S distances were calculated; the shortest N-S distance (see Figure) is 3.42 Å which, being longer than the sum of the van der Waals radii (3.35 Å), indicates that there is no hydrogen bonding, so that no deductions could be made in this way about the positions of the hydrogen atoms.

By analogy with urea ¹⁴ the hydrogen atoms would be expected to lie in the plane of the heavy atoms forming, with the carbon atom, a trigonal arrangement about the nitrogen atom; these positions have been designated H₁ and H₂. Another position consistent with trigonally hybridised nitrogen would be with the H-N-H plane perpendicular to the S-C-N-N' plane; these positions are designated H₃ and H₄. However, three-dimensional values for $\rho_{obs} - \rho_{calc}$ at all four postulated hydrogen positions did not differ significantly from the standard deviation in the electron density (0·2*e*/Å³) and calculation of structure factors with hydrogen atoms at either H₁ and H₂ or H₃ and H₄ with an isotropic $B = 5 \cdot 0$ Å² gave no change in the agreement index.

Hydrogen atoms in any position should be shown by a $\rho_{obs} - \rho_{calc}$ projection, the most favourable one being along the [010] axis on to the mirror plane. This projection was calculated and is shown in the Figure where the positions of the heavy atoms and the previously postulated hydrogen atoms are marked. In fact the only appreciable electron density, $1 \cdot 7e/Å^2$, is at x/a = 0.183, z/c = 0.400 and a line difference synthesis along y through this point showed peaks of 0.4 and $0.5e/Å^3$ at y/b = 3/4 and 1/4 respectively, and some additional peaks of $0.2e/Å^3$. The individual peaks are not of significant height and are 2 Å from the nearest atom (S).

These results suggest that the thermal motion of the hydrogen atoms is so large that

¹⁴ Worsham, Levy, and Peterson, *ibid.*, 1957, **10**, 319; Vaughan and Donohue, *ibid.*, 1952, **5**, 530.

¹³ Cruickshank, Acta Cryst., 1956, 9, 757.

the peak electron density has been reduced to an insignificant level; completely free rotation, however, is not consistent with some preliminary nuclear magnetic resonance observations.¹⁵

Dimensions of the Molecule.—For comparison the bond lengths and angles and their standard deviations are given below after (a) isotropic refinement, (b) anisotropic refinement, and (c) correction for rotational oscillation:

	C–S (Å)	σ(Å)	C-N (Å)	σ (Å)	s-c−n	σ	N-Ĉ−N	σ
(a)	1.710	0.016	1.319	0.015	123·0°	0.8°	114·0°	1.6°
(b)	1.707	0.012	1.311	0.012	$122 \cdot 2$	0.6	115.6	1.1
(C)	1.713	0.012	1.329	0.012	$122 \cdot 2$	0.6	115.6	1.1

The molecule is accurately planar, the deviation from the plane being less than 0 0003 Å for all atoms other than hydrogen. The values of σ are derived from the estimated

Difference projection along [010] with contour intervals of $1 e | \dot{A}^2$. The zero contour is dotted and contours are drawn over half the area only. For the carbon and sulphur atoms y/b is given. The shortest N-S separations are indicated.

standard deviations in the atomic co-ordinates and do not allow for possible uncertainties in the corrections for rotational oscillation. Final values for the bond lengths are $S-C = 1.71 \pm 0.01$ Å and $C-N = 1.33 \pm 0.01$ Å, and for the angles $S-C-N = 122.2^{\circ} \pm 0.6^{\circ}$ and $N-C-N = 116^{\circ} \pm 1^{\circ}$.

DISCUSSION

The carbon-sulphur (1.71 Å) and carbon-nitrogen (1.33 Å) bond lengths are significantly shorter than the generally accepted single-bond values, 1.82 and 1.475 Å, respectively. The double-bond lengths are not known accurately. For the carbon-nitrogen bond in s-triazine the order of which is at least 1.50, Lancaster and Stoicheff ¹⁶ obtained a very accurate value of 1.338 ± 0.001 Å, which is the same, within the limits of error, as in thiourea. This suggests that structures (I) and (II) must make a large contribution to the bonding, but the short carbon-sulphur bond with a bond order greater than 1.0

¹⁶ Lancaster and Stoicheff, Canad. J. Physics, 1956, 34, 1016.

¹⁵ Emsley and Smith, Proc. Chem. Soc., 1958, 53.

[1958]

shows that there is also a contribution from the conventional form (III). Thus the apparent bonding capacity of the carbon atom is more than 4.0, a result which has been obtained for other π -bonded molecules and which indicates the need for a molecular-orbital treatment.

Davies and Hopkins ¹⁷ have recently carried out molecular-orbital calculations on urea, all the atoms of which, hydrogen included, have been shown experimentally ¹⁴ to be coplanar. They obtain the following results: (i) complete delocalisation of the two lone pairs of electrons on the nitrogen atoms being assumed, the bond order of both C-O and C-N is 1.50, and the agreement between the calculated delocalisation of resonance energy and Pauling's ¹⁸ empirical value is good; (ii) delocalisation of the lone pairs being assumed to be sufficient only to make the C-O bond order 1.60, which is the value found from force constants, the bond order calculated for C-N is 1.40 and the calculated resonance energy is smaller than Pauling's empirical value.

Since the carbon-nitrogen bond length in thiourea does not differ significantly from that in urea (1.35 Å) we may infer that the lone-pair electrons are delocalised to about the same extent in the two substances, but a detailed theoretical treatment of sulphur compounds is much more difficult than that of the corresponding oxygen compounds. Accordingly, and because few suitable data for comparison are available, further discussion will be deferred to a later paper in which accurate bond lengths for thioacetamide will be presented.

EXPERIMENTAL

Crystals of thiourea were grown from alcohol. The unit cell dimensions, determined by Straumanis's method from the reflections (501), (404), and (0, 10, 0), were found to be a = 7.655, b = 8.537, c = 5.520 Å all ± 0.007 Å (v = 360.7 Å³). The density calculated for four molecules per unit cell is 1.399 g./c.c.; the observed value is 1.405 g./c.c. The absorption coefficient is 59.6 cm.⁻¹ and no absorption correction was made because very small crystals (diam. 0.1-0.15 mm.) were used.

Equi-inclination Weissenberg photographs were taken with Cu-K radiation about the three principal axes for all layer lines up to (hk4), (4kl), and (h3l). A multiple-film technique was used and the intensities were estimated visually by comparison with a calibration slip. After corrections for Lorentz and polarisation factors had been applied, the intensities from different layer lines were correlated and their square roots extracted to give structure factors on an arbitrary scale; the scale factor required to make these values absolute was one of the parameters refined. For structure factors determined by each of us independently R was 0.076.

We thank Professor E. G. Cox, F.R.S., and Dr. D. W. J. Cruickshank for helpful discussions, and Miss D. E. Pilling for carrying out the computations on the Manchester University electronic computer. Some of the equipment used was purchased with grants from the Royal Society and Imperial Chemical Industries Limited, and part of the cost of the computing work was borne by a grant from the D.S.I.R.

DEPARTMENT OF INORGANIC AND STRUCTURAL CHEMISTRY, THE UNIVERSITY OF LEEDS. [Received, February 11th, 1958.]

¹⁷ Davies and Hopkins, Trans. Faraday Soc., 1957, 53, 1563.

¹⁸ Pauling, "The Nature of the Chemical Bond," Cornell Univ. Press, 1939, p. 197.